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1 Overview
In this document we will go through the derivation of the gradient for an Recurrent Neural

Network (RNN). The formalism and names for everything are consistent with WildML’s RNN
tutorial. The purpose is to walk through the math in the tutorial in greater detail.

1.1 RNN Recap

The RNN structure can be seen below (image from WildML):

Figure 1: RNN structure and its unfolding

0
O O 9, Otes
A A
V v V Vv
S - w St-1 S Sl
0y —H—05>05~>0"~>
Unfold Woxy Wy W
U U U U
= g i Xtel
The equations for s; and o, are:
s = tanh(Uzy + Wsy—1), (1a)
Ut = softmax(Vsy). (1b)
Our loss function is:
. 1 N
L(y, ) = N Zyt log g (2)
t
For the sake of computational ease later, we define:
Ey = —yilog yr. (3)

N.B. that the loss functions are dot products between the vectors y; and element-wise logarithm
of gt


http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

1.2 Math Recap

The important math concepts here are Einstein Summation), chain rule, and matrix derivatives.
For the summation notation, we won’t be concerned with the dual basis, i.e. all indices will be
on the bottom of the variable for ease. N.B. we will not denote vectors or matrices with either
arrows or boldface.

Einstein summation notation is useful here to help manage the chain rule and matrix deriva-
tives. For example, suppose we have a function f(z,y) where x,y € RY. Furthermore, suppose
that x and y are functions of r € R, i.e. x = z(r) and y = y(r). Then,

0F _ 0f oni | 05 Oy,
or  Ox; Or dy;j Or

(4)

where we sum over the dummy indices ¢ and j. Here ”dummy” means that they’re only being
summed over, i.e. they aren’t a key part of the definition. An example of an index that isn’t a
dummy is m in the equation v,, = Ty, (while n is a dummy index).

A useful sanity checks is whether the left and right sides of the equation have the same free
indices, i.e. indices that are not summed over. In our chain rule example the left side has
no indices, and the right side has no free indices. In our second example, with v,,, both the left
and right have m as a free index and no others.

A nice rule of thumb for chain rule here comes with summed indices: For each pair, one
index will appear in the numerator of a derivative and the other will appear in the denominator
of a derivative.
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Now, suppose we have a matrix V &€ and a function g(M), and we want g—g. Then,

99\ _ 9y
<8V>ij - oVij ®)

Now we can use our new summation notation to clarify definition for our loss function as

Et = Y, log gti (6)

2 Gradient Calculations

The parameters of our RNN are U,V, and W, so we must compute the gradient of our loss
function with respect to these matrices. This will be done in order of increasing difficulty.

21 V

The parameter V is present only in the function . Let ¢ = V's;. Then,

8Et _ 8Et 8@% 6qtl
oVij  Ofr, Oqr, OVij

From our definition of E} @, we have that
OB _
8yAtk gtk

Our function ¢ is just the softmax function and has the same gradient as sigmoid, so

8:&% :{ _ﬁtkgtm k 7él ) (9)
aQtl gtk (1 - Z)tk) ) k - l


http://planetmath.org/einsteinsummationconvention

Putting together and @ gives us a sum over all values of k to obtain %:
!

Yi Yt A A N N
- A lytl ytl + Z ( k) ytkytl) = _ytl + ytlytl + Z ytkytl (10&)
k£l Yt k£l
= _ytl + gtl Z ytk . <1Ob)
k

And, if you’ll recall that y; are all one-hot vectors, then that sum is just equal to 1, so

by .
aQtl =Yy — Yy (11)
Lastly, ¢ = Vs, so q;; = Viymst,,- Then,
aqtl 8
= Vim 12
57 = gy (Vi) (122)
= 5il(5jm5tm (12b)
= 6il5t]" (12C)
Now we combine and (|12c) to obtain:
OE;
= (1. — ys,) St 13
OVU (9t; — i) St;s (13)

which is recognizable as the outerproduct. Hence,

OF, R
Tvt = (Ut — yt) ® st, (14)

where ® is the outer product.

22 W

The parameter W appears in the argument for s, so we will have to check the gradient in both
s¢ and ;. We must also make note that g, depends on W both directly and indirectly (through
st—1). Let zz = Uxy + Wsg—1. Then s, = tanh(z;).

At first it seems that by the chain rule we have:

8Et _ (9Et 8th 8qtl 65tm
oW Oy, Oqu, Osy,, OWy;

(15)

Note that of these four terms, we have already calculated the first two, and the third is simple:

8qtl o 8

D1, = @ (Vibst,) (16a)
1b0bm (16b)
Im- (16C)

The final term, however, requires us to notice that there is an implicit dependence of s; on W;;
through s;—; as well as a direct dependence. Hence, we have

8stm 8Stm 83tm 6st_1n

. 1
8Wij - 8Wij Bst_ln 8WZ‘]‘ ( 7)




But we can just apply this again to yield:

0st,, R 0st,, 0st,, O0si—1, dst,, Osi—1, Ost-2,
OWij 8Wij aStfln 8Wij 8st,1n Gst,gp 8Wij .

(18)

This process continues until we reach s_1, which was initialized to a vector of zeros. Notice that

. Ost,, 0Si—2, . 0st,, Osty,
the last term in (18] collapses to Doen OW,, and we can turn the first term into e OWS
Then, we arrive at the compact form

0s¢,,  0Osy,, Osp,
8Wi- N 8Srn OWij’

(19)

where we sum over all values of r less than ¢ in addition to the standard dummy index n. More

clearly, this is written as:
t

08y 08t 0y
m — m n 2
GWij zz:o OSTH 8Wij7 ( O)

which the referenced WildML tutorial indicates as the term responsible for the vanishing gra-
dient problem.
Combining all of these yields:

t

OE. . 0st,, 0sp,
: - (ytl - ytz) Wm Z ! (21)
r=0

oW,

asrn 8‘/Vz‘j '

23 U

Taking the gradient of U is similar to doing it for W since they both require taking sequential
derivativs of an s; vector. We have

OBy _ OE; O, Oqy Ost,,
OU;; O, Oqy, Osy,, OU;j

Note that we only need to calculate the last term now. Following the same procedure as for W,
we find that

(22)

t

st 0s;. 0y
m — m n , (23)
anj ; 8srn anj
and thus we have: .
8Et R 8st 857«
6UZ] (ytl ytl ) l ; 8Srn aUZ] ( )

The difference between U and W appears in the actual implementation since the values of

0sy Osy .
BU; and BWZ- differ.

2.4 Total Gradient

Since our loss function is just a summation of the E}’s, we can just sum up these values
we’ve calculated over all relevant time-steps for a given backprop to calculate our total gradient.
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